A self-adaptive distance regularized level set evolution method for optical disk segmentation.
نویسندگان
چکیده
The optic disc (OD) is one of the important anatomic structures on the retina, the changes of which shape and area may indicate disease processes, thus needs computerized quantification assistance. In this study, we proposed a self-adaptive distance regularized level set evolution method for OD segmentation without the periodically re-initializing steps in the level set function execution to a signed distance function during the evolution. In that framework, preprocessing of an image was performed using Fourier correlation coefficient filtering to obtain initial boundary as the beginning contour, then, an accurate boundary of the optic disc was obtained using the self-adaptive distance regularized level set evolution method. One hundred eye fundus color numerical images from public database were selected to validate our algorithm. Therefore, we believe that such automatic OD segmentation method could assist the ophthalmologist to segment OD more efficiently, which is of significance for future computer-aided early detection of glaucoma and retinopathy diseases.
منابع مشابه
A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملA Hybrid Method for Haemorrhage Segmentation in Trauma Brain CT
Traumatic brain injuries are important causes of disability and death. Physicians use CT or MRI images to observe the trauma and measure its severity for diagnosis and treatment. Due to the overlap of haemorrhage and normal brain tissues, segmentation methods sometimes lead to false results. In this paper, we present a hybrid method to segment the haemorrhage region in trauma brain CT images. F...
متن کاملAdaptive Regularized Level Set Method for Weak Boundary Object Segmentation
An adaptive regularized level set method for image segmentation is proposed. A weighted p x Dirichlet integral is presented as a geometric regularization on zero level curve, which is used to diminish the influence of image noise on level set evolution while ensuring the active contours not to pass through weak object boundaries. The idea behind the new energy integral is that the amount of reg...
متن کاملAnalysis of Fundus Fluorescein Angiogram Based on the Hessian Matrix of Directional Curvelet Sub-bands and Distance Regularized Level Set Evolution
This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from sub-bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this pur...
متن کاملJoint optical flow estimation, segmentation, and 3D interpretation with level sets
This paper describes a variational method with active curve evolution and level sets for the estimation, segmentation, and 3D interpretation of optical flow generated by independently moving rigid objects in space. Estimation, segmentation, and 3D interpretation are performed jointly. Segmentation is based on an estimate of optical flow consistent with a single rigid motion in each segmentation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bio-medical materials and engineering
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2014